SOLVABLE GROUPS CONTAIN LARGE CENTRALIZERS[†]

BY

I. M. ISAACS

Mathematics Department, University of Wisconsin, Madison, WI 53706, USA

ABSTRACT

It is proved that every nonabelian solvable group contains a noncentral element whose centralizer has order exceeding its index.

1. Introduction

If G is a finite group of even order > 2 with center of odd order, then there exists an element $x \in G - \mathbf{Z}(G)$ with $|C_G(x)| > |G|^{1/3}$. This result of R. Brauer and K. A. Fowler [3] has motivated E. A. Bertram [1] to ask for nonabelian solvable groups G, whether or not there necessarily exists $x \in G - \mathbf{Z}(G)$ with $|C_G(x)| > |G|^{1/2}$.

In [1], Bertram answered this affirmatively for groups G with order involving at most two primes. In [2], Bertram and M. Herzog provide further conditions sufficient to guarantee an affirmative answer to Bertram's question. For example, they show that if G = MN with M and N nilpotent or if |G| is not divisible by the fifth power of any prime, then "large" centralizers necessarily exist.

In this paper, we show that no special hypotheses are needed.

THEOREM. Let G be finite, nonabelian and solvable. Then there exists $x \in G - \mathbf{Z}(G)$ with $|C_G(x)| > |G|^{1/2}$.

We remark that for every prime power $p^a > 2$, there exists a Frobenius group of order $p^a(p^a-1)$ in which the largest centralizer for any nonidentity element has order p^a . This shows that the exponent $\frac{1}{2}$ in the theorem cannot be replaced by any larger number. Also, some solvability hypothesis is certainly needed since, for instance, the largest centralizer in A_5 has order $5 < 60^{1/2}$.

Research partially supported by a grant from the National Science Foundation. Received September 8, 1985

2. Preliminaries

In this section, we prove a few lemmas.

LEMMA 1. Let $N \triangleleft G$ and $g \in G$ and suppose g centralizes at least n elements of N with orders coprime to o(g). Then

$$|C_G(g)| \ge n |C_{\bar{G}}(\bar{g})|$$

where $\bar{G} = G/N$ and $\bar{g} = Ng \in \bar{G}$.

PROOF. Write $\bar{H} = C_{\bar{G}}(\bar{g})$ with $H \supseteq N$ and note that $C_G(g) \subseteq H$. Let K be the conjugacy class of g in H and observe that since $\bar{g} \in Z(\bar{H})$, we have $\bar{K} = \{\bar{g}\}$ and $K \subseteq Ng$.

Now let v be the maximal divisor of |N| which is coprime to o(g) and choose integer m with $m \equiv 1 \mod o(g)$ and $m \equiv 0 \mod v$. Since $o(\bar{g})$ divides o(g), we have $\bar{g}^m = \bar{g}$ and so we have a map $\varphi : Ng \to Ng$ defined by $\varphi(x) = x^m$.

If $y \in K$, there are n elements $z \in N$ with $z^{v} = 1$ which commute with y. For any of these z, we have $\varphi(zy) = y$ and so $|\varphi^{-1}[\{y\}]| \ge n$ for all $y \in K$. It follows that

$$|N| = |Ng| \ge n|K|$$
.

Therefore,

$$|C_G(g)| = \frac{|H|}{|K|} \ge n \frac{|H|}{|N|} = n |\bar{H}| = n |C_{\bar{G}}(\bar{g})|.$$

LEMMA 2. Let V be an FG-module for some field F. Let $C \triangleleft G$ be cyclic with $C = C_G(C)$ and assume $C_V(c) = 0$ whenever $1 \neq c \in C$. If $H \subseteq G$ with $C \cap H = 1$, then $C_V(H) > 0$.

PROOF. It is no loss to assume F is algebraically closed since if $E \supseteq F$, we could replace V by $V \otimes_F E$ without affecting either the hypothesis or the conclusion. Write $V = V_1 \dotplus \cdots \dotplus V_r$, where the V_i are the homogeneous components of V as an FC-module. (Note that $\operatorname{char}(F)$ cannot divide |C| and so V is completely reducible as an FC-module.)

Now C acts like scalar multiplication on each V_i and the V_i are permuted by G. We claim that the action of H on $\{V_i \mid 1 \le i \le t\}$ is semiregular, for suppose $K \subseteq H$ stabilizes V_i . Then the actions of K and C on V_i commute and hence [C, K] acts trivially on V_i . Now $[C, K] \subseteq C$ and $C_V([C, K]) \ne 0$ and so we have [C, K] = 1 and $K \subseteq C(C) = C$. Therefore $K \subseteq C \cap H = 1$ and our claim is established.

Now choose $0 \neq v \in V_1$. The vectors vh for $h \in H$ all lie in different V_i and since the sum of these spaces is direct, we have

$$w=\sum_{h\in H}vh\neq 0.$$

It is clear that $w \in C_V(H)$.

LEMMA 3. Let U and V be FG-modules for some field F. Suppose we have a nonzero bilinear map $\langle \cdot, \cdot \rangle : U \times V \rightarrow F$ which is G invariant. (I.e. $\langle ug, vg \rangle = \langle u, v \rangle$ for all $u \in U$, $v \in V$ and $g \in G$.) Let V^* be the FG-module which is the dual of V. Then U and V^* have a common composition factor as FG-modules.

PROOF. It suffices to construct a nontrivial FG-homomorphism from U to V^* . For $u \in U$, define $u\theta: V \to F$ to be the map $\langle u, \cdot \rangle$ so that $u\theta \in V^*$. The map $\theta: U \to V^*$ is linear since $\langle \cdot, v \rangle$ is linear for each $v \in V$. Now to show that θ respects the G-actions, we need that $ug\theta = u\theta g$. We have

$$(v)(ug\theta) = \langle ug, v \rangle = \langle u, vg^{-1} \rangle = (vg^{-1})(u\theta) = v(u\theta g)$$

as required. Finally, $\theta \neq 0$ since $\langle \cdot, \cdot \rangle$ is not identically zero.

3. Proof of the theorem

Let G be solvable and write Z = Z(G) and $s = |G|^{1/2}$. We assume that Z < G, and working for a contradiction, we assume that $|C_G(g)| \le s$ for all $g \in G - Z$. Equivalently, $|cl(g)| \ge s$ when $g \in G - Z$.

STEP 1. Let $N \triangleleft G$ with $N \not\subseteq Z$, then |N| > s and N is nonabelian.

PROOF. Let $n \in N - Z$. then

$$|N| > |\operatorname{cl}(n)| \ge s.$$

If N is abelian, then $N \subseteq C(n)$ and so $|N| \le |C(n)| \le s$, a contradiction.

Now put F = F(G), the Fitting subgroup.

STEP 2. We have Z < F < G and if U/Z is a chief factor of G with $U \subseteq F$ and U/Z a p-group, then

- (a) $F \subseteq C_G(U/Z)$,
- (b) [F, U] is a p-group contained in Z.

PROOF. If G is nilpotent, there exists abelian $A \triangleleft G$ with A = C(A). By Step 1, $A \subseteq Z$ and so G = C(A) = A and G is abelian, a contradiction. Therefore $F \triangleleft G$ and since $F \supseteq C_G(F)$, this forces $Z \triangleleft F$.

Statement (a) follows since $1 < U/Z \cap Z(F/Z) \triangleleft G/Z$ and so $U/Z \subseteq Z(F/Z)$. We now have $[F, U] \subseteq Z$ and so if $x \in F$ and $y \in U$, we get $[x, y]^p = [x, y^p] = 1$ since $y^p \in Z$. It follows that [F, U] is a p-group.

Now fix a particular U as in Step 2 with U/Z an elementary abelian p-group. Write $\bar{G} = G/F$ and use overbars to denote the natural homomorphism $G \to \bar{G}$. Since F < G, we have $\bar{G} > \bar{1}$ and by Step 2a, \bar{G} acts on U/Z and in fact, U/Z is a simple $\mathbb{Z}_n\bar{G}$ -module.

STEP 3. The $\mathbb{Z}_p \bar{G}$ -module U/Z is faithful and $O_p(\bar{G}) = 1$.

PROOF. It suffices to prove the first assertion. Let $\overline{K} = C_{\bar{G}}(U/Z)$. Then $[U,K] \subseteq Z$ and so [U,K,F] = 1. Also, $[F,U,K] \subseteq [Z,K] = 1$ by Step 2. By the three subgroups lemma, therefore, we have [K,F,U] = 1 and so $U \subseteq C([K,F])$. Since $U \not\subseteq Z$, we have |U| > s by Step 1, and this forces $[K,F] \subseteq Z$.

Since $Z = \mathbf{Z}(G)$, we see that $F/Z = \mathbf{F}(G/Z)$ and so contains its own centralizer in G/Z. Therefore, $K \subseteq F$ and so $\overline{K} = \overline{1}$ as required.

We consider the centralizers in \bar{G} of the nonzero vectors uZ in the module U/Z (where $u \in U-Z$). Fix the notation

$$m = \max\{|C_{\tilde{G}}(uZ)| | u \in U - Z\}$$

and let Q be the Sylow p-subgroup of Z.

STEP 4. We have $|\bar{G}| \cdot |Q| \ge ms$ with strict inequality if p does not divide $(1/m)|\bar{G}|$.

PROOF. Choose $u \in U - Z$ such that $|C_{\bar{G}}(uZ)| = m$ and write $C = C_{\bar{G}}(uZ)$ so that $F \subseteq C$ by Step 2a. We therefore have |C/F| = m.

Since $[C, u] \subseteq Z$, we have $[c, u]^p = [c, u^p] = 1$, since $u^p \in Z$ and thus [C, u] is a p-group contained in Q. It follows that $|c|_C(u)| \le |Q|$. We now have

$$s \ge |C_G(u)| \ge |C_C(u)| = |C|/|cl_C(u)| \ge |C|/|Q| = m|F|/|Q|$$

and thus

$$ms = m |G|/s \le |G| \cdot |Q|/|F| = |\tilde{G}| \cdot |Q|$$

as desired.

If equality holds and p does not divide $(1/m)|\bar{G}|$, then s is an integer with p-part equal to |Q|. Equality also implies that $|C_G(u)| = s$ and thus Q is a full Sylow p-subgroup of $C_G(u)$. Since $u^p \in Z$, it follows that $u \in QZ = Z$ and this contradiction completes the proof.

Step 5. Suppose $g \in G - F$ with o(g) not divisible by p and choose V with $Z \subseteq V \subseteq C_U(g)$. Let $T = N_G(V)$. Then

(a)
$$|\bar{T}:C_{\bar{T}}(\bar{g})| \geq m|V:Z|/|\bar{G}:\bar{T}|$$

and

(b)
$$|\bar{G}:C_{\bar{G}}(\bar{g})| \geq m$$
.

These inequalities are strict if p does not divide $(1/m)|\bar{G}|$.

PROOF. Note that (b) follows from (a) by taking V = Z. We proceed to prove (a). If P is the Sylow p-subgroup of V, then since $p \nmid o(g)$, Lemma 1 yields that

$$s \ge |C_G(g)| \ge |C_T(g)| \ge |P| \cdot |C_{\bar{T}}(\bar{g})|.$$

By Step 4, then,

$$|\bar{G}| \cdot |Q| \ge ms \ge m|P| \cdot |C_{\bar{T}}(\bar{g})|.$$

Since |P:Q| = |V:Z|, (a) follows.

If equality occurs here, it must occur in Step 4 and so p divides $(1/m)|\bar{G}|$.

STEP 6. For some prime $r \le m$, we have $O_r(\bar{G}) > 1$.

PROOF. Let $\bar{C} = F(\bar{G})$ and assume, by way of contradiction, that every prime divisor of $|\bar{C}|$ exceeds m. By the definition of m, therefore, the action of \bar{C} on U/Z is elementwise fixed point free and so \bar{C} is a nilpotent Frobenius complement.

We claim that $|\bar{C}|$ is cyclic. If this fails, then \bar{C} necessarily has a characteristic subgroup \bar{X} of order 2. Then 2 > m and we have m = 1 and the action of all of \bar{G} on U/Z is elementwise fixed point free. In this case, $p \nmid |\bar{G}|$. Let $g \in X$ be a 2-element with $\bar{X} = \langle \bar{g} \rangle$. Then $\bar{g} \in Z(\bar{C})$ and this contradicts Step 5b since we must have strict inequality in this case.

Since $\bar{C} = C_{\bar{G}}(\bar{C})$, we can apply Lemma 2 and conclude that if $\bar{H} \subseteq \bar{G}$ with $\bar{H} \cap \bar{C} = \bar{1}$, then \bar{H} has a nontrivial fixed point in U/Z. It follows that $m \ge |\bar{H}|$. In particular, if we let π be the set of all primes not dividing $|\bar{C}|$, we can take \bar{H} to be a Hall π -subgroup of \bar{G} and we conclude that $|\bar{G}|_{\pi} \le m$.

Now let q be the smallest prime divisor of $|\bar{C}|$ and let $\bar{Y} \subseteq \bar{C}$ have order q. Then $\bar{Y} \triangleleft \bar{G}$ and so $|\bar{G} : C_{\bar{G}}(\bar{Y})|$ divides q-1 and so is a π -number. This yields that

$$|\bar{G}:C_{\bar{G}}(\bar{Y})| \leq |\bar{G}|_{\pi} \leq m.$$

Now $p \nmid |\bar{C}|$ (for instance, by Step 3) and so $p \neq q$ and we can apply Step 5b (with g a q-element such that $\langle \bar{g} \rangle = \bar{Y}$) to conclude the reverse inequality.

Equality therefore occurs in 5b and also, we have $|\bar{G}|_{\pi} = m$. Therefore, $(1/m)|\bar{G}| = |\bar{G}|_{\pi}$ and this is not divisible by p since $p \times |\bar{C}|$. In this situation, however, the inequality in 5b must be strict, and this is a contradiction.

By Step 6, we can choose a chief factor E/F of G such that \overline{E} is an r-group with $r \le m$. Fix this choice of E.

STEP 7. The group \tilde{E} is not cyclic.

PROOF. Otherwise, $|\bar{G}: C_{\bar{G}}(\bar{E})| \le r - 1 < m$ and this contradicts Step 5b since $r \ne p$.

Since \bar{E} is not cyclic and U/Z is (by Step 3) a faithful, completely reducible $\mathbb{Z}_p\bar{E}$ -module, it cannot be that this module is homogeneous. We can therefore write

$$U/Z = U_1/Z \times U_2/Z \times \cdots \times U_t/Z$$

where the U_i/Z are the homogeneous components of U/Z as a $\mathbb{Z}_p\bar{E}$ -module and t>1. The subgroups U_i are transitively permuted by the action of \bar{G} .

Let $\bar{E}_i = C_{\bar{E}}(U_i/Z)$. Then \bar{E}/\bar{E}_i acts faithfully and homogeneously on U_i/Z and thus it is cyclic and $|\bar{E}:\bar{E}_i|=r$.

STEP 8. We have t = 2 and $|\bar{E}| = r^2$.

PROOF. If $[U_1, U_i] \neq 1$, let $C = [U_1, U_i]$. Then $C \subseteq U' \subseteq [F, U]$ and so is a p-group by Step 2b. Let H be of index p in C and identify C/H with the additive group of \mathbb{Z}_p . Then commutation defines a nonzero bilinear map

$$U_1/Z \times U_i/Z \rightarrow \mathbb{Z}_p$$

(Read the commutator mod H.) Since $C \subseteq Z$, this map is \overline{E} -invariant and so by Lemma 3, $(U_1/Z)^*$ and U_i/Z have a common composition factor as $\mathbb{Z}_p\overline{E}$ -modules. Since $(U_1/Z)^*$ and each U_i/Z is homogeneous, this can happen for at most one value of i (possibly i = 1). Thus $[U_1, U_i] = 1$ for $i \neq i$.

We now do some computations. Write z = |Z| and $u = |U_1/Z|$. Then $|U_j/Z| = u$ for all j and

$$\left|\prod_{i\neq i}U_i\right|=zu^{i-1}.$$

This group centralizes $U_1 \not\subseteq Z$ and thus $zu^{t-1} \leq s$.

If $x \in U_1 - Z$, then all G-conjugates of x lie in the various $U_i - Z$ and so

$$s \leq |\operatorname{cl}_G(x)| \leq t(zu-z).$$

Therefore,

$$zu^{i-1} \leq zt(u-1).$$

This yields $u^{t-1} - 1 < t(u-1)$ and

$$t > 1 + u + u^2 + \cdots + u^{t-2}$$
.

If $t \ge 3$, this gives

$$t > 1 + u + 1 + \cdots + 1 = u + t - 2$$

and u < 2, a contradiction. Thus $t \le 2$ and since t > 1, we have t = 2, exactly.

Finally, $\bar{E}_1 \cap \bar{E}_2 = \bar{1}$ since \bar{E} is faithful on $U/Z = U_1/Z \times U_2/Z$. Since $|\bar{E}:\bar{E}_i| = r$, it follows that $|\bar{E}| = r^2$.

STEP 9. Our counterexample does not exist.

PROOF. Let $T = N_G(U_1)$ so that $T \supseteq F$ and |G:T| = 2 since $\{U_1, U_2\}$ is a conjugacy class of subgroups.

Now $\vec{E}_1 \triangleleft \vec{T}$ and $|\vec{E}_1| = r$ so that we have

$$|\bar{T}:C_{\bar{T}}(\bar{E}_1)| \leq r-1.$$

Let $g \in E_1$ be an r-element with $\langle \bar{g} \rangle = \bar{E}_1$. We wish to apply Step 5a for this g, with U_1 in place of V. To do this, we need to check that $U_1 \subseteq C(g)$. Since $\bar{g} \in \bar{E}_1 = C_{\bar{E}}(U_1/Z)$, we have $[U_1, \langle g \rangle] \subseteq Z$ and thus $[U_1, \langle g \rangle, \langle g \rangle] = 1$.

If P is the Sylow p-subgroup of U_1 , then $1 = [P,\langle g \rangle,\langle g \rangle] = [P,\langle g \rangle]$ since $(|P|,|\langle g \rangle|) = 1$. Thus $P \subseteq C(g)$ and since $U_1 = PZ$, we have $U_1 \subseteq C(g)$ as required.

Step 5a now yields that

$$m > r - 1 \ge |\bar{T} : C_{\bar{\tau}}(\bar{E}_1)| \ge m |U_1 : Z|/|\bar{G} : \bar{T}|.$$

Therefore, $|U_1:Z| < |\bar{G}:\bar{T}| = 2$, a contradiction.

REFERENCES

- 1. E. A. Bertram, Large centralizers in finite solvable groups, Israel J. Math. 47 (1984), 335-344.
- 2. E. A. Bertram and M. Herzog, Finite groups with large centralizers, J. Austral. Math. Soc., to appear.
 - 3. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. 62 (1955), 565-583.